Planification en analyse sensorielle

- Qualités attendues du plan d'évaluation
- Les plans d'évaluation « classiques »
- Les plans optimaux

François Husson husson@agrocampus-ouest.fr

Qualités attendues d'un plan d'évaluation

On se limite aux plans « classiques » : monadique séquentiel

Exemple: 10 produits à évaluer

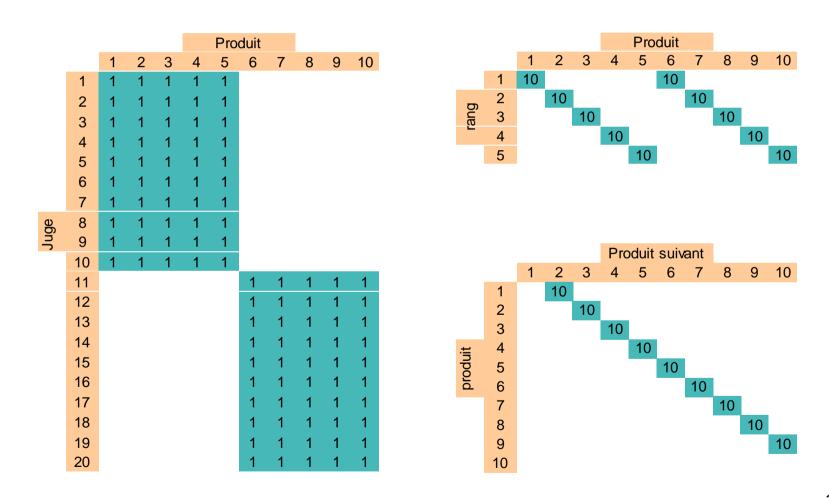
Un juge peut évaluer au plus 5 produits

Salle de 10 places

20 juges disponibles

	séa	nce1						séa	nce2				
				Rang							Rang		
		1	2	3	4	5			1	2	3	4	5
	1	P1	P2	P3	P4	P5		11	P6	P7	P8	P9	P10
	2	P1	P2	P3	P4	P5		12	P6	P7	P8	P9	P10
	3	P1	P2	P3	P4	P5		13	P6	P7	P8	P9	P10
	4	P1	P2	P3	P4	P5		14	P6	P7	P8	P9	P10
Juges	5	P1	P2	P3	P4	P5	Juges	15	P6	P7	P8	P9	P10
	6	P1	P2	P3	P4	P5		16	P6	P7	P8	P9	P10
	7	P1	P2	P3	P4	P5		17	P6	P7	P8	P9	P10
	8	P1	P2	P3	P4	P5		18	P6	P7	P8	P9	P10
	9	P1	P2	P3	P4	P5		19	P6	P7	P8	P9	P10
	10	P1	P2	P3	P4	P5		20	P6	P7	P8	P9	P10

	séa	nce1						séa	nce2				
				Rang							Rang		
		1	2	3	4	5			1	2	3	4	5
	1	P1	P2	P3	P4	P5		11	P6	P7	P8	P9	P10
	2	P1	P2	P3	P4	P5		12	P6	P7	P8	P9	P10
	3	P1	P2	P3	P4	P5		13	P6	P7	P8	P9	P10
	4	P1	P2	P3	P4	P5		14	P6	P7	P8	P9	P10
Juges	5	P1	P2	P3	P4	P5	Juges	15	P6	P7	P8	P9	P10
	6	P1	P2	P3	P4	P5		16	P6	P7	P8	P9	P10
	7	P1	P2	P3	P4	P5		17	P6	P7	P8	P9	P10
	8	P1	P2	P3	P4	P5		18	P6	P7	P8	P9	P10
	9	P1	P2	P3	P4	P5		19	P6	P7	P8	P9	P10
	10	P1	P2	P3	P4	P5		20	P6	P7	P8	P9	P10


Plusieurs confusions : confusion Juge – Produit , Produit – Rang ,
 Produit – Succession , Produit – Séance

Qu'est-ce qu'un « bon plan » ?

- Respecte des contraintes pratiques (non négligeables) : salle, nombre de sujets, de produits par juges, nombre de séances, etc.
- **Bonne connaissance** des produits (la note d'un produit ne doit pas être entâchée par d'autres facteurs : juge, rang d'évaluation, arrière-effet). L'effet produit doit être non confondu avec les autres effets

Comment vérifier l'orthogonalité (la non-confusion) entre 2 effets ?

- On construit le tableau croisé entre les deux facteurs
- Orthogonalité ↔ terme constant dans le tableau

Les plans d'évaluation "classiques"

Pour l'instant : non prise en compte de l'ordre de présentation

Blocs complets *versus* **blocs incomplets**

Plan complet : tous les juges évaluent tous les produits

Avantage Orthogonalité Juge – Produit

Effets produits connus avec une précision optimale

Limite Fatigue sensorielle si nombre de produits élevé

Plan incomplet : chaque juge n'évalue qu'une partie des produits

Plans en Blocs Incomplets Equilibrés (BIE)

Propriétés d'un plan en BIE

- \odot Chaque juge évalue un même nombre de produits : R (R < P)
- Chaque produit est évalué un même nombre de fois : r
- ullet Toute paire de produits est évaluée un même nombre de fois, λ

Exemple : 4 juges, 4 produits, 3 produits par juges. J=4, P=4, R=3

		Produits							
		1	2	3	4				
•	1								
luges	2								
Juges	3								
,	4								
•	Plι	ısie	urs	dé	faut	S			

Conditions d'existence d'un BIE

P = IO et J = II: pas de BIE

 $\lambda = r(R-1)/(P-1)$ λ : répétition d'un couple de produits

Construction d'un BIE : on prend toutes les combinaisons de *R* parmi *P*

Exemple : 4 produits, 3 produits par juges. P=4, R=3 (donc $J=C_4^3=4$)

		1	2	3	4
Juges	1				
	2				
	3				
	4				

Avantages - Moins de produits : fatigue moindre

- Permet d'évaluer un plus grand nombre de produits
- Le complémentaire d'un BIE est un BIE


Limites

- Confusion entre l'effet juge et l'effet produit (mais confusion faible, acceptable en pratique)
- Pas de gestion du rang d'évalaution
- N'existe pas pour toute configuration (*J*, *P*, *R*)

Prise en compte de l'ordre de présentation

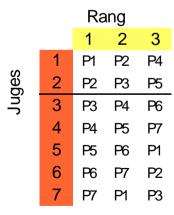
Plans en carrés latins

- Les juges évaluent tous les produits
- Chaque produit est évalué autant de fois
- Chaque produit est évalué autant de fois à chaque rang

Avantages - Orthogonalité *Produit – Rang, Juge - Rang* et *Produit – Juge*

- Construction simple

Limites


- Existence : le nombre de juges = multiple de P
- Pas de gestion de l'effet de succession

Carrés de Youden

= BIE symétrique : J = P et R = r

Avantages - faible confusion *Produit – Juge* (cf. BIE)

Limites - Existence : BIE + symétrie

Carrés de Williams

- Chaque juge déguste tous les produits : P = R
- Equilibre des effets de succession (d'ordre 1) : chaque produit précède n'importe quel autre produit un même nombre de fois
 - 1 carré pour P pair : J = P
 - 2 carrés pour P impair : J = 2P

Avantages - Orthogonalité *Produit – Rang, Produit – Succession* et *Produit – Juge*

- Construction simple

Limites - Existence : le nombre de juges = multiple de *P* ou de 2*P*

Construction des carrés de Williams

Cas P pair

1ère ligne: 1, 2, p, 3, p-1, 4, p-2, ... Lignes suivantes: on ajoute 1 à la ligne précédente

			Rang							
		1	2	3	4	5	6			
	1	1	2	6	3	5	4			
Juges	2	2	3	1	4	6	5			
Ϊ	3	3	4	2	5	1	6			
	4	4	5	3	6	2	1			
	5	5	6	4	1	3	2			
	6	6	1	5	2	4	3			

- > library(SensoMineR)
- > plan <- plan.williams(6)</pre>

Cas P impair

Il faut 2 carrés

1ère ligne du 1er carré : 1, 2, p, 3, p-1 ... Lignes suivantes : on ajoute 1 à la ligne précédente

1^{ère} ligne du 2^{ème} carré : ordre inverse de la 1^{ère} ligne du 1^{er} carré

Lignes suivantes : on ajoute 1 à la ligne précédente

				i (a	119	
		1	2	3	4	5
	1	1	2	5	3	4
Juges	2	2	3	1	4	5
Ď	3	3	4	2	5	1
	4	4	5	3	1	2
	5	5	1	4	2	3
	6	4	3	5	2	1
	7	5	4	1	3	2
	8	1	5	2	4	3
	9	2	1	3	5	4
	10	3	2	4	1	5

Plans optimaux

Pourquoi les plans optimaux ?

 Limite principale des plans usuels (Carrés de Williams, Carrés Latins)

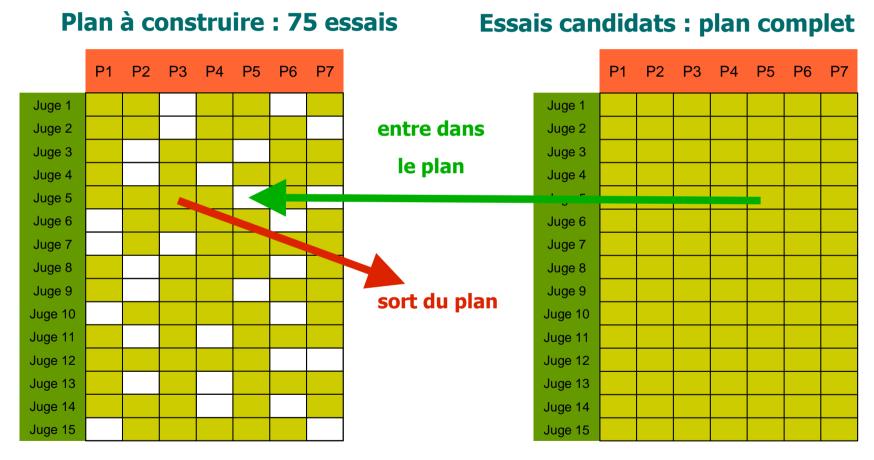
N'existent pas pour toute configuration (J, P, R)

Alternative : les plans optimaux

Prise en compte de configurations quelconques (*J, P, R*) quitte à endommager certaines qualités du plan en terme de confusion

Principes de base

Plan construit par algorithme d'échange (en 2 étapes) :

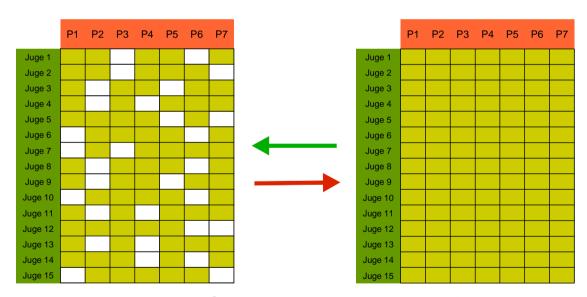

- 1. Attribution des produits aux juges (type BIE)
- 2. Attribution d'un ordre de présentation des produits

Exemple : J = 15, P = 7, R = 5

	rang 1	rang 2	rang 3	rang 4	rang 5
Juge 1	4	3	2	7	1
Juge 2	1	4	6	5	7
Juge 3	7	6	1	2	5
Juge 4	4	7	2	6	3
Juge 5	3	6	5	1	2
Juge 6	5	6	7	4	2
Juge 7	2	5	3	1	7
Juge 8	1	7	4	5	3
Juge 9	6	2	3	4	1
Juge 10	4	3	7	5	2
Juge 11	5	2	7	3	6
Juge 12	7	1	6	2	4
Juge 13	2	1	5	6	4
Juge 14	6	4	1	3	5
Juge 15	3	5	4	7	6

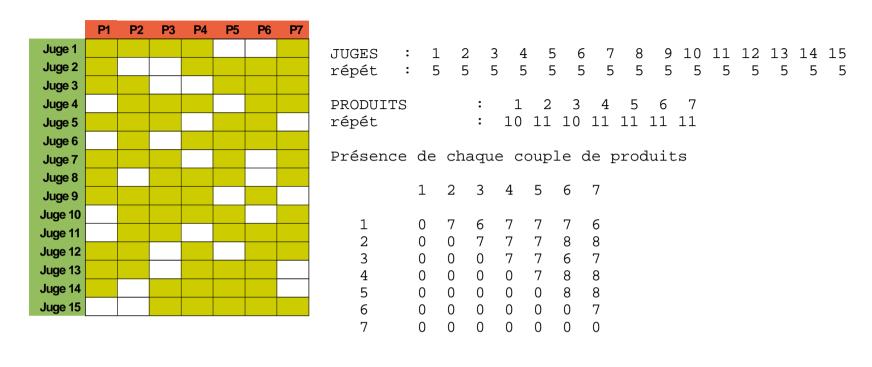
ETAPE 1. Attribution des produits aux juges

- Initialisation du plan : choix au hasard de 75 essais
- Réalisation d'échanges pour améliorer le plan



Quel est le **meilleur échange** ? Besoin d'un **critère de qualité** d'un plan

Critère de qualité


- Qualité d'un plan mesurée par la variance des effets des produits
- Variance d'un effet produit : précision avec laquelle l'effet d'un produit est estimé

On effectue des échanges jusqu'à ce que l'on ne puisse plus améliorer le plan

- Cette façon de procéder = Algorithme d'échanges
- Un plan ainsi obtenu = D optimal ou A optimal

Plan obtenu à l'ETAPE 1.

PRODUITS 1 2 3 4 5 6 7

Var. effet produit: 0.0919 0.0835 0.0919 0.0836 0.0836 0.0835 0.0835 effectif: 10 11 10 11 11 11 11

V-efficacité = 0.936830

ETAPE 2. Attribution d'un ordre de dégustation

- Initialisation par un ordre aléatoire
- Algorithme d'échange des rangs des produits

	P1	P2	P 3	P4	P5	P6	P 7
Juge 1		-12	- 1 3		- 1 3	-10	- ' '
Juge 2							
Juge 3							
Juge 4							
Juge 5							
Juge 6							
Juge 7							
Juge 8							
Juge 9							
Juge 10							
Juge 11							
Juge 12							
Juge 13							
Juge 14							
Juge 15							

*								
	rang 1	rang 2	rang 3	rang 4	rang 5			
Juge 1	2	1	3	7	4			
Juge 2	1	7	4	5	6			
Juge 3	7	2	5	1	6			
Juge 4	4	3	7	2	6			
Juge 5	1	2	3	6	5			
Juge 6	6	2	5	4	7			
Juge 7	3	1	2	5	7			
Juge 8	1	4	7	3	5			
Juge 9	4	1	6	3	2			
Juge 10	2	3	4	5	7			
Juge 11	7	6	5	3	2			
Juge 12	4	6	7	1	2			
Juge 13	4	1	2	6	5			
Juge 14	3	4	5	6	1			
Juge 15	3	5	4	7	6			

- Parmi tous les couples de produits d'un même juge : Quelle permutation des rangs de 2 produits ?
- La meilleure permutation : celle qui conduit aux plus faibles
 confusions produit rang et produit arrière-effet

Plan obtenu à l'ETAPE 2.

	rang 1	rang 2	rang 3	rang 4	rang 5
Juge 1	4	3	2	7	1
Juge 2	1	4	6	5	7
Juge 3	7	6	1	2	5
Juge 4	4	7	2	6	3
Juge 5	3		5	1	2
Juge 6	5		7	4	2
Juge 7	2		3	1	7
Juge 8	1	7	4	5	
Juge 9	6	2	3	4	1
Juge 10	4	3	7	5	
Juge 11	5	2	7	3	
Juge 12	7	1	6	2	
Juge 13	2	1	5	6	4
	6	1	1	3	
Juge 14		4	1	3	
Juge 15	3	5	4	/	6

- > library(SensoMineR)
- > plan <- plan.optimal(7,15,5)</pre>

nb.produit

nb.juge

nb.produit.par.juge

Matrice Produit x Rang

(terme constant = 2.143)

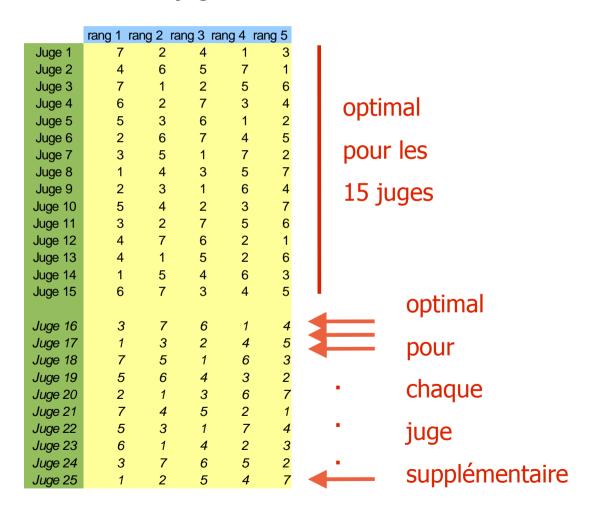
EAMR optimal = 0.245EAMR = 0.245 (*)

1 2 2 2 2 2 2 2 2 3 3 3 2 2 2 2 2 2 5 2 2 3 2 6 2 3 2 2 2 2

Matrice Prod. précédent x Prod. suivant

(terme constant = 1.429)

EAMS optimal = 0.490EAMS = 0.490 (*)


1 2 3 4 5 6 7

4 2 1 2 0 1 1 2

6 1 2 1 2 2 0 1

Plans emboîtés – Comment gérer une incertitude sur le nombre de juges ?

- nombre de juges mini = 15
- nombre de juges maxi = 25

